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Malaria burden on Bioko Island has decreased significantly over the past 15 years. The impact

of interventions on malaria prevalence, however, has recently stalled. Here, we use data from

island-wide, annual malaria indicator surveys to investigate human movement patterns and

their relationship to Plasmodium falciparum prevalence. Using geostatistical and mathematical

modelling, we find that off-island travel is more prevalent in and around the capital, Malabo.

The odds of malaria infection among off-island travelers are significantly higher than the rest

of the population. We estimate that malaria importation rates are high enough to explain

malaria prevalence in much of Malabo and its surroundings, and that local transmission is

highest along the West Coast of the island. Despite uncertainty, these estimates of residual

transmission and importation serve as a basis for evaluating progress towards elimination

and for efficiently allocating resources as Bioko makes the transition from control to

elimination.
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Malaria infection imported through human movement is
of particular concern for countries and regions seeking
elimination1–10. Imported malaria can precipitate local

transmission in receptive areas and lead to persistence of the
disease. Human hosts and mosquito vectors move about and with
them the parasites that they carry. Human movement has a
greater effect on malaria importation, however, because humans
move at larger spatial scales and are able to transport parasites
longer distances1,3–9,11. International travel accounts for much of
the importation of parasites by humans returning from malaria
endemic areas to non-endemic countries12, but a very significant
proportion of the human-related parasite movement takes place
between regions of differing receptivity within an endemic
country6. Understanding these movements is fundamental for
local control and elimination efforts2,3,9.

Located in the Gulf of Guinea, off the coast of Cameroon,
Bioko is the main island of insular Equatorial Guinea (EG). It is
administratively divided into four districts: Baney, Malabo,
Riaba and Luba (Fig. 1). Its largest city, Malabo, is the country
capital and home to around 85% of the population of the island.
The Bioko Island Malaria Control Project (BIMCP) was
established in 2003 with the aim to reduce the heavy burden of
malaria13. Prior to this year, entomological inoculation rates
(EIR) on Bioko were among the highest ever recorded for any
malaria endemic area14–16. In 15 years of operation, the project
has successfully reduced malaria transmission from hyper and
holoendemic levels to largely hypoendemic and residual
malaria chiefly through island-wide, intensive vector control
and improved case management and prevention, though
pockets of higher transmission intensity persist17. After the
completion of the current phase by the end of 2018, strategies
for the following five-year phase will aim at malaria elimination
on the island18. While the specific plans are still being deli-
neated, the inclusion of a pre-erythrocytic vaccine to the arsenal
of control interventions is under consideration19.

Imported malaria has been identified as a major challenge for
malaria control and elimination on Bioko20. The island lies in the
middle of a region where malaria transmission is mostly hyper-
endemic21 and thus presents multiple sources of malaria parasites
that can be carried during human travel (Fig. 1). In this study, we
analyze infection prevalence and travel data assembled by the
BIMCP as part of their annual malaria indicator surveys (MIS) to
identify the patterns of human movement that can most sig-
nificantly determine Plasmodium falciparum parasite importa-
tion. We also use maps of predicted travel prevalence (TP) and P.
falciparum parasite rate (PfPR), together with mathematical
modeling, to provide preliminary estimates of the level of malaria
importation through human travel. We find that the contribution
of malaria infections acquired while travelling to local malaria
prevalence on Bioko Island is significant and discuss its impli-
cations for the adoption of adequate and cost-effective malaria
control strategies.

Results
Observed and predicted human travel. A total of 17,016, 14,922
and 14,479 people were surveyed in 2015, 2016 and 2017, each
sample representing more or less 6% of the population of the
island. Overall, 20.2% of respondents had pernoctated at either
another district or outside of Bioko at least one night within the
preceding eight weeks; 12.2% had traveled to any destination off
the island, 10.3% to Río Muni and 8.7% reported travel within
Bioko (Table 1). When considering travel to within and off-island
destinations together, no particular pattern was observed (Fig. 2).
If they were considered separately, however, clear patterns were
evident. Off-island travel, both to all destinations or specifically to
Río Muni, was more common among inhabitants of Northern
Bioko (i.e. Malabo and its surroundings; Fig. 1), whereas within-
island travel was more commonly reported by people living along
the East and West Coasts, and Southern Bioko. The geostatistical
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Fig. 1 Bioko Island and its location in the Gulf of Guinea. a The continental territory of Equatorial Guinea is known as Río Muni. The color scale represents
predicted PfPR in children, reconstructed from data produced by the Malaria Atlas Project, which are available for use under the Creative Commons
Attribution 3.0 Unported License21,44. b Detail of Bioko Island with its four districts (Malabo, Baney, Riaba and Luba) and two uninhabited nature reserves
(Pico Basile National Park, to the North, and Caldera de Luba Scientific Reserve, to the South). The red diamond corresponds to the location of the capital
city, Malabo, and the red triangle to that of the isolated town of Ureka, which is part of Luba district
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models effectively smoothed out sampling variance and provided
a more coherent picture of TP (Fig. 2).

When analyzing within-island travel by district of origin and
destination, a clear pattern was evident, whereby 89.8% of people
inhabiting districts other than Malabo travelled to Malabo
district. Conversely, domestic destinations of Malabo district
residents were balanced mostly between Luba (44.3%) and Baney
(43.6%; Table 2 and Fig. 3). The overwhelming majority of off-
island travelers were bound to Río Muni (84.3%), 8.6% of them
traveled to other African countries, 6.1% went to a destination
outside of Africa, and the remaining 1% visited one of the other
islands of EG.

Malaria prevalence and travel history. Table 3 presents the
observed PfPR in people with and without history of travel. PfPR

for the three MIS weighted by sample size was 10.6% [95% CI
8.7–12.4%] in all individuals tested and 8.8% [95% CI: 6.9–10.7%]
in individuals without history of travel. Conversely, PfPR among
people who traveled off the island was 23.3% [95% CI:
20.2–26.3%]. Travelers to Río Muni had a PfPR of 26.6% [95% CI:
23.1–30.2%], in contrast with travelers to other off-island desti-
nations in whom PfPR ranged between 5.4 and 7.1%. Within-
island travelers showed an overall malaria prevalence of 6.6%
[95% CI: 4.0–9.3%]. PfPR in off-island travelers was significantly
higher than PfPR in all individuals and non travelers (p < 0.01
Wilcoxon rank sum test; Fig. 4). The data showed increased odds
of malaria infection in off-island travelers compared to non-
travelers (OR: 3.0 [95% CI: 2.8–3.2]), especially when considering
travel to Río Muni (OR: 3.6 [95% CI: 3.4–3.9]; Table 3). We used
the median value of the proportion of off-island travelers (5.3%)
to classify map-areas into low and high travel and found that,

Table 1 Sample size and history of travel in respondents by each MIS

MIS year 2015 2016 2017 All years

Sample size 17,016 (6.8) 14,922 (5.9) 14,479 (5.7) 46,417
Any travel (%) 18.78 22.36 19.57 20.18
Off-island travel, all destinations (%) 12.23 13.17 11.02 12.15
Off-island travel to Río Muni (%) 10.80 10.48 9.37 10.25
Within-island travel (%) 7.06 9.90 9.21 8.65

Numbers within brackets next to the sample size are the approximate percentage of the human population of Bioko represented by the samples. Source data are provided as a Source Data file
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Fig. 2 Travel prevalence on Bioko. The maps show the raw data (top row) and predicted surfaces (bottom row) as the percentage of people by map-area
responding having traveled anywhere (a, d), to Río Muni (b, e) and within Bioko (c, f). Grey map-areas on the top row maps are those where no individuals
were sampled in any of the three MIS due to low population. Note that the scale limits are different between the top and bottom rows. The noise
introduced by sampling variance, illustrated by the extreme values of the top row, was smoothed out by the geostatistical models (bottom row). Source
data are provided as a Source Data file
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after excluding travelers, the median PfPR in the former was
significantly lower (p < 0.01 Wilcoxon rank sum test; Fig. 4).

The predicted malaria prevalence surfaces confirmed the
patterns revealed by the raw data, with higher PfPR towards the
West and North of Bioko; this pattern was similar for PfPR in all
individuals (PfPRall) and PfPR in non-travelers (PfPRnt). When
looking at PfPR in travelers to Río Muni (PfPRrm), however,
higher prevalence was evident throughout, including in and
around Malabo (Fig. 5). The ratio of the mean PfPRrm to the
mean PfPRnt highlighted those areas where the infection among
travelers probably contributed more to the overall PfPR than local
transmission, and this was the case for the great majority of map-
areas (179 out of 194, 92.3%; Fig. 6).

Local malaria transmission and importation. Our findings
showed that PfPR was significantly higher in those who had
traveled to mainland EG than PfPR in all individuals, yet in
individuals with history of within-island travel it was actually
lower. We therefore sought to derive an estimate for the total
fraction of all observed infections that were attributable to
exposure in mainland EG. Figure 6 plots the travel fraction and
local residual transmission estimates by map-area based on the
raw data and on the predicted surfaces. The former suffered from
noisy data and several missing values. Supplementary Figures 1
and 2 present the upper and lower bounds for the latter estimates.
The travel fraction was estimated at 100% in much of Malabo and
in a few isolated populations to the East and South of Bioko. An

a
Uninhabited
Baney
Malabo
Luba
Riaba

b c

Fig. 3 Cartograms of Bioko Island illustrating within-island destinations. Areas were distorted in proportion to the number of within-island travelers bound
to each destination district (Table 2). a The administrative units of Bioko Island are shown with their correct shape and size, for comparison. b, c The
destinations of those who traveled from Malabo and of those traveling from all other districts are illustrated as cartograms, respectively. Each cartogram
was produced using 10 iterations. Source data are provided as a Source Data file

Table 3 Map-area level malaria prevalence data

MIS year 2015 2016 2017 All

Sample size 109.8 [76.1–143.4] 86.6 [60.2–112.9] 83.1 [57.8–108.4] 83.2 [57.8–108.7]
PfPR in all tested 12.7 [10.0–15.5] 8.5 [7.0–10.1] 10.2 [7.4–12.9] 10.6 [8.7–12.4]
PfPR in non travelers 10.8 [8.2–13.5] 6.8 [5.2–8.2] 8.4 [5.6–11.3] 8.8 [6.9–10.7]
PfPR in off-island travelers 25.9 [20.2–31.6] 19.7 [14.6–24.8] 24.2 [19.6–28.9] 23.3 [20.2–26.3]
PfPR in travelers to Río Muni 28.8 [22.9–34.7] 23.4 [17.9–28.9] 27.5 [22.2–32.8] 26.6 [23.1–30.2]
PfPR in travelers to other EG islands NA 6.8 [0–18.5] 7.7 [0–28.1] 7.1 [0.2–14.1]
PfPR in travelers to other African
destinations

3.8 [1.8–5.8] 7.0 [1.2–12.9] 4.8 [1.5–8.2] 5.4 [2.2–8.6]

PfPR in travelers to destinations out
of Africa

6.3 [0–15.5] 1.5 [0.7–2.3] 9.5 [2.6–16.3] 5.4 [0–10.9]

PfPR in within-island travelers 8.1 [4.7–11.5] 5.2 [2.8–7.5] 7.0 [3.4–10.6] 6.6 [4.0–9.3]
OR for off-island travel, all destinations 2.9 [2.6–3.2] 3.4 [2.9–3.8] 3.4 [3.0–3.9] 3.0 [2.8–3.2]
OR for off-island travel to Río Muni 3.3 [3.0–3.7] 4.2 [3.7–4.8] 4.1 [3.6–4.7] 3.6 [3.3–3.9]

PfPR values are in percent. All figures, except for odds ratios (OR), are sample size weighted means and numbers within brackets indicate 95% confidence intervals. Source data are provided as a Source
Data file

Table 2 Number of people reporting within-island travel according to district of residence and district of destination

District Baney Malabo Luba Riaba All non-Malabo

Baney — 568 (43.6) 22 (2.2) 29 (6.9) 51 (2.2)
Malabo 688 (82.9) — 971 (97.2) 360 (85.9) 2019 (89.8)
Luba 104 (12.5) 576 (44.3) — 30 (7.2) 134 (6.0)
Riaba 38 (4.6) 158 (12.1) 6 (0.6) — 44 (2.0)
Total 830 (100) 1302 (100) 999 (100) 419 (100) 2248 (100)

Figures within brackets are the percentages of the totals. The destination districts are listed in the first column. The column headers name the district of origin. Source data are provided as a Source Data
file
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Fig. 4 Distribution of observed PfPR across map-areas according to history of travel. a PfPR in all individuals and in those with and without history of off-
island travel. b Distribution of PfPR across map-areas with low and high levels of off-island travel, after excluding travelers. The cutoff was determined by
the median travel prevalence for all map-areas (see text). The thick black lines and notches in the boxes represent the medians and associated 95%
confidence intervals; the box limits represent the interquartile range; the minimum and maximum values are given by the horizontal lines at the end of the
whiskers and outliers, or data points that are lower or greater than the first and third quartile by 1.5 times the interquartile range, are represented by the
empty circles. Source data are provided as a Source Data file
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Fig. 5 Observed (top row) and mean predicted PfPR (bottom row). a, d All individuals. b, e Off-island travelers to Río Muni. c, f Non-travelers. Grey map-
areas in (a) are those where no individuals were sampled in any of the three MIS due to low population. Grey map-areas in (b, c) also indicate places where
no individuals responded to travel history and hence PfPR in travelers and non-travelers could not be estimated. The noise introduced by sampling variance,
illustrated by the extreme values of the top row, was smoothed out by the geostatistical models (bottom row). Source data are provided as a Source Data
file
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estimated 48.4% [lower bound 9.8%; upper bound 58.3%] of the
population of Bioko could live in map-areas with no local
transmission. Accordingly, 67.2% [lower bound 27.2%; upper
bound 70.9%] and 74.8% [lower bound 62.7%; upper bound
83.5%] could live in map-areas where the travel fraction was
estimated at 80% or higher and 50% or higher, respectively (see
Supplementary Table 1). Our analyses returned an estimated
overall population-weighted mean prevalence due to local resi-
dual transmission of 5.1%, with higher estimated prevalence
mostly along the West Coast, and in a few isolated areas of
Malabo and Riaba (Fig. 6). In some of these areas, the prevalence
of malaria would likely be higher even in the absence of malaria
importation. Conversely, according to our model local trans-
mission in Malabo contributes little to the malaria prevalence
measured there.

Discussion
In its fourth phase beginning in 2019, the BIMCP has redefined
itself into the Bioko Island Malaria Elimination Project (BIMEP)
to integrate new intervention strategies aiming to rid the island of
malaria22. Even though substantial gains have been achieved,
there is a long path ahead before reaching the ultimate goal of
elimination. One of the main challenges is tackling malaria
importation. This study attempted to better quantify the extent of
the problem of imported malaria and explain how human travel
might shape this phenomenon. Our findings show clear human
mobility patterns operating on the island and characterizing them

is a stepping stone towards understanding malaria importation.
Crucially, our results suggest that the degree of malaria impor-
tation, and its contribution to malaria prevalence on Bioko,
probably has been highly underestimated.

Around a fifth of the human subjects surveyed in the last three
annual MIS had travelled at least once, within eight weeks prior to
the survey, to any destination outside of their district of residence.
Anecdotal reports suggest that the human population of Bioko is
highly mobile and travels frequently from rural areas to Malabo
for employment and schooling. We observed a pattern for within-
island travel whereby between 83 and 97% of non-residents of
Malabo traveled to the city from other districts (Table 2), a
pattern resembling gravity models that explain population
movements as a function of distance and population size23,24. In
effect, the choice of distance to Malabo and population density as
covariates for the travel surfaces was based on these findings. The
higher prevalence of travel to mainland EG by Malabo residents
does not follow the same gravity assumption, however. The city of
Bata, in Río Muni, is the main port of entry for inbound flights
and boats from Malabo, but the population of Bata is similar in
size to that of Malabo and the travel time between both cities, a
proxy of distance, differs substantially according to the means of
transportation (around 45 min by air and 15 h by boat, on
average). It is possible that people that live in Malabo can afford
more trips abroad because they are generally wealthier than the
rest of the population and this could partly explain the off-island
travel pattern observed25–27. Another factor could be that,
because the main government offices are based in Malabo and
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Fig. 6 Estimating the degree of malaria importation. a Ratio of the mean predicted PfPRrm to the mean predicted PfPRnt. Magenta pixels are map-areas
where predicted PfPRnt is higher, green ones where predicted PfPRrm is higher and white pixels where both PfPR are the same. b, c depict, respectively, the
mean travel fraction of malaria prevalence and the local residual malaria estimated by our model based on the raw data. d, e are the same estimates but
based on the geostatistical surfaces. In b, d, light, yellow pixels suggest that malaria in those map-areas is imported and hence local residual malaria could
be zero. In the absence of malaria prevalence attributable to travel, the residual malaria is estimated to be highest mostly in the Northwest of Bioko (lighter,
orange to yellow pixels in c, e). Source data are provided as a Source Data file
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Bata, public servants move frequently between Bioko and the
mainland. The demographics of Bioko and Río Muni may also
play a role; Fang people predominate in Río Muni and also
represent a large proportion of the population of Malabo. Con-
versely, the South of Bioko is predominantly inhabited by Bubi
people, who are relatively few in Río Muni. These demographic
differences may influence travel connection patterns.

Our findings suggest that malaria cases are actively imported
by off-island travelers to Río Muni, similar to what has been
described in Zanzibar1,4. The MIS data revealed that overall PfPR
was significantly higher in areas where travel to mainland EG was
more prevalent and that the odds of malaria infection
in these travelers were more than three times the rest of the
population (Fig. 4; Table 3). Moreover, our modeled estimates
indicated that around half of the population of Bioko lived in
areas where the travel fraction could reach 100% and that this
phenomenon was particularly apparent in Malabo. This does not
mean that there is no transmission occurring in these areas but
rather that it is plausible that travel could account for all or most
of the malaria observed. In fact, anopheline vectors have been
collected in Malabo, albeit at densities that are an order of
magnitude lower than at entomological surveillance sites else-
where on the island, and these vectors may sustain local trans-
mission in the city. On the other hand, our estimates could partly
explain the atypical malaria prevalence found in Malabo, which is
unusually high for an urban area28. This is not surprising given
that PfPR in children in Río Muni ranges between 32 and 59%
21,29 (Fig. 1), corresponding to mesoendemic and hyperendemic
malaria transmission. During a boat survey conducted in 2013,
Bradley et al. estimated a PfPR of 70.4% in children traveling
from mainland to Bioko in contrast with 38.1% prevalence in
young passengers traveling in the opposite direction20. During the
same boat survey it was revealed that 86% of Bioko residents
traveling to Río Muni intended to stay longer than a week. A
similar finding was true for mainland residents visiting Bioko,
with 85% of them intending to stay for more than one week on
the island20. Moreover, the duration of stay of around a quarter of
travelers in both directions was reportedly longer than seven
weeks. The longer that people stay at destinations where malaria
transmission is high, the higher the chances of acquiring an
infection; someone who spends a couple of days is less likely to
import new infections than someone who spends a couple
of weeks.

The probability of onward transmission after the importation
of cases depends on the local receptivity of areas acting as
parasite sinks, which is largely dependent on local vectors and
vector control8,9. Despite the significant achievements of the
BIMCP, including the elimination of the formerly dominant
vector Anopheles funestus30,31 during the early stages of
implementation14 and dramatic reductions in EIR shown in
recent surveys18, resilient populations of An. coluzzi and An.
melas persist. These populations were responsible for main-
taining a mean EIR of 13 infected bites per person per year
measured at sentinel sites in 201718. Unfortunately, given the
limited number of such estimates and the disproportionately
smaller number of sites located in urban Malabo, these data
proved insufficient to cross-validate our estimates of local
residual transmission. Local receptivity to malaria is a problem
in those areas where vector populations thrive despite intensive
control with insecticide residual spraying and mass distribution
of insecticide treated mosquito nets. Although a relationship
between within-island human travel and malaria prevalence
was not apparent, it is intuitive to assume that it probably plays
an important role in mixing imported parasites from mainland
as locals travel back from Malabo to rural communities where
mosquito biting rates are still high.

The main caveats of our analyses are given by the limitations of
the data. First, the destinations of travelers were only broadly
recorded and hinder an accurate assessment of the vulnerability
linked to human travel. By recording more specifically the des-
tination of travelers to mainland EG it should be possible to
determine the demographic sources of parasites with a higher
degree of spatial certainty using available resources9,21, to better
assess risk of malaria infection in travelers and, therefore, to
discriminate imported malaria from locally acquired cases. In a
similar fashion, knowing with better precision the destinations of
within-island travel would help to understand the dynamics of
onward transmission of imported parasites. Distances are rela-
tively short on Bioko and people move around frequently
between areas with differing receptivity during the peak biting
times of anopheline vectors. This micro-scale movement was
impossible to characterize from the MIS data. Although people
tend to spend the great majority of their time at home, even small
amounts of time exposed to mosquito bites can lead to infec-
tion10. Second, human movement relevant for malaria epide-
miology is seasonal32. In areas that have successfully brought
transmission down but that remain receptive to malaria, trans-
mission may become seasonal following human movement and
this seasonality is an important consideration for planning
malaria elimination strategies. Searle et al. showed that human
movement in southern Zambia was affected by seasonality and
that this had an effect on local malaria epidemiology10. Here we
used three cross-sectional snapshots of malaria prevalence and
human travel comprising the eight weeks prior to each MIS. It
was not possible to infer frequency of travel or to capture any
seasonal component of either human infection or movement
patterns. Third, the MIS sampling is sometimes biased by the
absence of working adult men during the surveys; since this
cohort of the population may have different travel habits, this
introduced an unknown bias into our estimates. Finally, the data
provided insights of the movement of returning residents that act
as passive acquirers to bring parasites back to Bioko. To fully
estimate importation rates, visitors to Bioko that carry parasites
from mainland sources and act as active transmitters also must be
accounted for6, although their contribution to overall importation
probably would be comparatively small1.

We addressed these caveats partly by adjusting the assump-
tions of our model and testing them through sensitivity analyses
(see Supplementary Notes 6 to 8, Supplementary Table 2 and
Supplementary Figs. 3 to 5). Importantly, our findings prompted
the modification of the questionnaire for the 2018 MIS to more
explicitly capture some of this missing information, including the
specific destinations of both off-island and within-island travel,
the length of stay during travel and the frequency of travel within
a specified period (i.e. how many times respondents traveled as
opposed to only recording whether they had traveled or not
within the specified time frame). Therefore, the new MIS will
provide better data for future analyses. In addition, new, more
comprehensive surveys of both boat and air passengers would be
desirable and could help to further understand traveling patterns
between the mainland and Bioko and better quantify malaria
importation rates. These surveys, however, are both logistically
difficult and resource intensive making them possibly unfeasible
in practice.

As Bioko approaches pre-elimination, addressing the problem
of malaria importation becomes increasingly relevant. Because
much of the PfPR currently observed on the island could prob-
ably be accounted for by imported cases, novel control strategies
designed to address specifically case importation should be
considered33,34. Targeted malaria control in high-risk areas of
mainland EG where travelers go most would reduce the main
source of imported parasites to Bioko. In addition, interventions
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such as malaria screening at ports and protective measures spe-
cifically targeted at high-risk travelers may prove onerous to
implement but would help to directly curb the impact of
imported malaria. Ongoing work is developing more sophisti-
cated models to simulate how a vaccine could help eliminate
malaria under different scenarios of efficacy and coverage19,
considering also various levels of malaria importation. These new
modeling efforts will incorporate travel models that capture the
human movement patterns described in this paper and will also
take advantage of better data from more detailed MIS ques-
tionnaires. Despite the progress, substantially more work is nee-
ded to improve our understanding of malaria importation in
order to prepare Bioko for elimination.

Methods
Data. For operational purposes, the BIMCP divides Bioko into 2,091 uniquely
coded, 1 × 1 km map-areas, 194 of which were inhabited according to a 2015
population census35. Since the start of the BIMCP, individual level, geo-positioned
data have been collected every year through annual MIS. We used data from the
last three years available: 2015, 2016 and 201725–27 and aggregated them at the
map-area level. The surveys were conducted in August and September each year,
during the peak of the main rainy season. Nine map-areas were not surveyed in any
of the three MIS due to low human population (i.e. data were available for 185 of
the 194 inhabited map-areas). We focused our analyses on two types of data:
malaria prevalence and travel data. For the purposes of measuring malaria, we
included data from individuals of all ages because we found no significant differ-
ences in PfPR between the overall sample population and children (2–10 year olds).
During the MIS, all individuals present in their household during each survey were
tested for the presence of P. falciparum in their blood using Carestart (Access Bio)
rapid diagnostic tests (RDTs) that we used for deriving a PfPR for each map-area.
People were also asked whether they had traveled outside of their district or outside
of Bioko within eight weeks prior to the survey and stayed away for at least one
night. We defined TP per map-area as the percentage of people in each sampling
unit answering yes to within island travel, off-island travel and both. Within and
off-island travel questions were treated separately in the questionnaires; that is to
say, the same individual could have answered positively to history of travel off the
island and within the island. It was not possible to assess frequency of travel with
accuracy because the questionnaire responses were binned into three categories
(1–3, 4–10 and >10 travel occurrences within the stipulated period) with most
people (97–99%, depending on the survey year) falling in the first category. The
destinations of these travels were recorded broadly. For within-island travel, the
final destination was recorded at the district level (Fig. 1). For off-island destina-
tions, the answers were constrained to: Río Muni (i.e. mainland EG), other islands
of insular EG (mainly, Annobón and Corisco), other African countries, and any

destination outside of Africa. Unless otherwise stated, we focused our analyses on
off-island travel destined to mainland EG.

Predicting travel and PfPR. Even though individuals were surveyed in most map-
areas, in some, sample size variance affected the credibility of PfPR and TP esti-
mates derived from the data. Moreover, there were several map-areas where there
were no off-island travelers and hence no denominator for estimating PfPR in
travelers. We therefore resorted to using the geo-positioned PfPR and TP raw
estimates as inputs for a Bayesian geostatistical modeling framework36. This
methodology allowed not only to estimate PfPR and TP in pixels where no indi-
viduals had been sampled in order to produce continuous surfaces for each variable
but also to account for the sample size variance across all map-areas. For PfPR,
environmental and socio-demographic variables known to interact with and
influence PfPR were assembled as 30 arcsecond spatial grids. For predicting TP, the
covariates used were population density and distance to Malabo (Table 4). These
variables were also input data for the Bayesian geostatistical model.

PfPR in all individuals, in off-island travelers and in within-island travelers, as
well as TP for any travel, off-island travel and within island travel were modeled via
a Bayesian binomial logistic regression model with spatial random effects
accounting for a spatial latent process. The integrated nested Laplace
approximation (INLA) approach37 was adopted for model inference and prediction
via the R-INLA package38. Model description is as follows.

Let Ys, ns, and ps be the number of positive individuals (i.e. either malaria
infected or recent traveler), the number of individuals screened, and prevalence
(PfPR or TP) at geo-coded location s ðs ¼ 1; ¼ ;NÞ. Ys is assumed to follow a
binomial distribution:

Ys � Binðps; nsÞ: ð1Þ
The prevalence of infection (or travel), ps, is modeled via a linear regression on

the logit scale:

logitðpsÞ ¼ XT
s βþ ϕs: ð2Þ

The matrix X includes an intercept and a list of environmental and socio-
demographic covariates known to affect PfPR. For the travel surfaces, the matrix
included only distance to Malabo and population density. β is the vector of
regression coefficient, and ϕs is the continuously-indexed Gaussian random field.
The Gaussian random field was modeled using stochastic partial differential
equations which represent a Matérn spatial Gaussian field as a Gaussian Markov
random field via triangulation39.

The variable selection procedure started with examining collinearity among the
environmental covariates by calculating variance inflation factors (VIF) prior to
fitting the statistical model to the data. A stepwise selection of covariates using VIF
was undertaken to make sure all VIF values were below a desired threshold (VIF <
10 in this case). A VIF threshold of 10 was chosen based on the commonly
recommended rule of thumb for reducing collinearity40. Besides, we found that a
smaller or larger VIF threshold value did not influence the outcome of covariate
selection. Using the full set of covariates, a VIF for each variable was calculated, the

Table 4 List of environmental and socio-demographic covariates used for predicting PfPR and TP

Covariate Description Dynamic Source

Accessibility Distance to cities with populations >50,000 Static Nelson et al.45

AI Aridity index Static World Clim46

DistToWater GIS derived surface that measures distance to permanent and semi-permanent water
based on presence of lakes, wetlands, rivers, streams and accounting for slope and
precipitation

Static MAP (from WWF
surfaces47, 48)

Elevation Elevation as measured by the shuttle radar topography mission (SRTM) Static SRTM derivative49

Landcover Types of land cover including cropland, forest, grass savanna, shrubland, urban/
barren, water, wetlands, and woody savanna

Static MODIS derivative50

PET Potential evapotranspiration Static World Clim46

Slope GIS derived surface calculated from SRTM elevation surface Static MAP (from SRTM49)
Stable_lights Index that measures the presence of lights from towns, cities and other sites with

persistent lighting
Static NOAA51

TWI Topographic wetness index Static MAP (from SRTM49)
Distance to Malaboa Distance to central Malabo Static This paper
Population sizeb Estimated population per 1 × 1 km pixel Annual WorldPop52

EVI Enhanced vegetation index Annual MODIS derivative53

LST_day Day time land surface temperature Annual MODIS derivative54

LST_delta Diurnal difference in land surface temperature Annual MODIS derivative54

LST_night Night time land surface temperature Annual MODIS derivative54

TCB Tasseled Cap Brightness; measure of land reflectance Annual MODIS derivative55

TCW Tasseled Cap Wetness Annual MODIS derivative55

TSI Temperature suitability index Annual MAP56

aUsed for the TP surfaces only
bUsed for both the TP and PfPR surfaces
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variable with the single highest value was removed, all VIF values with the new set
of variables were recalculated, the variable with the next highest value was
removed, and so on, until all VIF values were below the threshold of 10.
Subsequently, variable selection was performed using bidirectional elimination by
running stepwise regressions on all model combinations using the shortlisted
covariates and calculating the deviance information criterion (DIC) for each model.
The final model was the one with the smallest DIC value. We note that reducing
the VIF was associated with reducing the degree of multi-collinearity of the
covariates in a regression model and it certainly did not imply a reduction in DIC.
The VIF reduction step was done prior to fitting the Bayesian geostatistical model
to the data. On the other hand, the DIC reduction step was part of the Bayesian
geostatistical model fitting and selection procedures for identifying the final and
most parsimonious model that was then used to predict prevalence rates across
Bioko Island. The DIC has been widely justified and recommended as a standard
criterion for comparing complex Bayesian hierarchical models41. Using the final
model, PfPR and TP were predicted over a 30 arcsecond (i.e., approximately 1 × 1
km spatial resolution) spatial grid of the 2,091 pixels that cover Bioko island. The
input data for PfPR were divided into four different sets: all the population, those
with history of travel to any destination off the island, those with history of travel
to Río Muni and those without history of off-island travel. For the TP predictions,
four different input data sets were used as well: all travel, off-island travel to any
destination, off-island travel to Río Muni and within-island travel. The resulting
predictions were depicted as maps of mean PfPR and mean TP for each of these
sets. A range of model validation analyses were used to assess the model’s
goodness-of-fit and predictive accuracy, including Pearson correlation of observed
and predicted data, and validation runs with incremental hold-out validation data
subsets. The credible intervals for the covariates and geo-statistical model outputs
are presented in Supplementary Note 9, Supplementary Tables 3 to 8 and
Supplementary Fig. 6.

Estimating malaria importation. Using the predicted surfaces, we calculated the
ratio of the mean predicted PfPR in off-island travelers to Río Muni (PfPRrm) to the
mean predicted PfPR in non-travelers (PfPRnt) to gauge the relative importance of
imported malaria. We also developed a model to estimate the travel fraction, or the
fraction of the malaria positive population attributable to travel. The population
that was malaria positive could include people who had traveled within the eight
week period, but also many who could have traveled before the eight weeks but
remained infected. As input data for this simple mathematical model we used the
predicted surfaces of PfPR in all individuals (PfPRall), PfPRrm and travel prevalence
to Río Muni (TPrm).

Let h denote the daily force of infection, and δ the daily off-island travel rate (i.e.
the rate at which people return from Río Muni). Let η denote the portion who
acquired malaria while traveling off island. The term ηδ is like h, equivalent to a
force of infection from off-island travel. Let r denote the daily decay rate of malaria
prevalence in the absence of treatment, where r�1 � 200 days42. The mathematical
model for the overall prevalence of infection, PR, is:

dPR
dt

¼ ðhþ ηδÞð1� PRÞ � rPR; ð3Þ

where at the steady state:

PR ¼ hþ ηδ

hþ ηδ þ r
: ð4Þ

In the absence of local transmission, prevalence would be entirely attributable to
travel, PRT0:

PRT0 ¼
ηδ

ηδ þ r
: ð5Þ

We defined the travel fraction as TF= PRT0/PR. Conversely, in the absence of
imported malaria, prevalence from local residual transmission, PRL0, would be:

PRL0 ¼
h

hþ r
ð6Þ

Using the model, we estimated δ, η and h from TPrm and PfPRrm. As an upper
bound, we assumed that everyone who returned with malaria had acquired it while
traveling in Río Muni. As a lower bound, we assumed that travelers who left Bioko
bound to Río Muni were already infected with the same probability as the average
population of that particular map-area. In between these bounds we assumed that
parting travelers were already infected due to local residual transmission; these last
estimates, which are the ones shown in the Results, involved co-estimating h and η
in order to estimate for local residual transmission and travel fraction. We used
human population data from a recent census35 to estimate the percentage of
inhabitants living in areas of different estimated travel fractions. We also conducted
sensitivity analyses on the duration of infection (r), heterogeneity in travel, h and η.
See Supplementary Notes 1 to 5 for a full explanation of our assumptions and
mathematical derivations.

All analyses were performed and all figures created using R 3.5.343.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data for the PfPR estimates in Figure 1 are available from the Malaria Atlas
Project (MAP) at https://map.ox.ac.uk/. Source data for Figs. 2 to 5 and Tables 1 to 3 are
provided with the paper as a Source Data file and are also available at https://doi.org/
10.6084/m9.figshare.8009684.v1. These are raw data aggregated at map-area level and
selected data from the individual-level MIS databases. The full individual-level data are
not publicly available due to them containing information that could compromise
privacy/consent of surveyed individuals.

Code availability
The mathematical code developed to estimate local residual transmission and travel
fraction is available in R language from https://doi.org/10.6084/m9.figshare.8009684.v1.
The input data for this code are provided within the Source Data file to produce Fig. 6
and all Supplementary Information figures.
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